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Wigner-Seitz Method

Wigner and Seitz showed that at least for the|alkali metals

there is no

inconsistency between the electron wavefunctions of free atoms and the nearly

free electron model of the band structure of a crystal. Over most of a band the

energy may depend on the wavevector nearly as for a free electron. However,
the Bloch wavetunction, unlike a plane wave, will pile up charge on the positive
ion cores as in the atomic wavefunction.

A Bloch function satisfies the wave equation
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thus (16) may be written as an equation for wuy:

( = @ £ U0) ) = uns) (17)

At k = 0 we have )y = ug(r), where uy(r) has the periodicity of the lattice, sees
the ion cores, and near them will look like the wavefunction of the free atom.

It is much easier to find a solution at k = 0 than for a general k, because at
k = 0 a nondegenerate solution will have the full symmetry of the crystal. We

Y = exp(ik - rjuo(r) . (18)

This is of the Bloch form, but ug is not an exact solution of (17): it is a solution
only if we drop the term in k - p. Often this term is treated as a perturbation, as

in Problem 8. The k - p perturbation theory developed there is especially use-
ful in finding the effective mass m* at a band edge.



Because it takes account of the ion core potential the function (18) is a

much better approximation than a plane wave to the correct wavefunction. The

energy of the approximate solution depends on k as (7k)%/2m, exactly as for the
plane wave, even though the modulation represented by u(r) may be very
strong. Because ug is a solution of

(0% + V) wole) = el 19

the function (18) has the energy expectation value €, + (A2k%/2m). The function
uo(r) often will give us a good picture of the charge distribution within a cell.

Wigner and Seitz developed a simple and fairly accurate method of calcu-
lating u(r). Figure 19 shows the Wigner-Seitz wavefunction for k = 0 in the 3s

conduction band of metallic sodium. The function is practically constant over
0.9 of the atomic volume. To the extent that the solutions for higher k may be
approximated by exp(ik - r)uy(r), the wavefunctions in the conduction band will
be similar to plane waves over most of the atomic volume, but increase mark-

edly and oscillate within the ion core.
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Figure 19 Radial wavefunctions for the 3s orbital of free sodium atom and for 3s conduction band

in sodium metal. The wavefunctions, which are not normalized here, are found by integrating the
Schrodinger equation for an electron in the potential well of an Na™ ion core. For the free atom the
wavefunction is integrated subject to the usual Schrédinger boundary condition y(r) — 0 as r — oo
the energy eigenvalue is —5.15 eV. The wavefunction for wavevector k = 0 in the metal is subject
to the Wigner-Seitz boundary condition that dy/dr = 0 when r is midway between neighboring
atoms; the energy of this orbital is —8.2 eV, considerably lower than for the free atom. The orbitals
at the zone boundary are not filled in sodium; their energy is +2.7 eV. (After E. Wigner and

F. Seitz.) See slide 10
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Figure 10.7
Characteristic spatial variation of the real (or imaginary) part of the tight-binding wave function
(10.6).

Cohesive Energy. [The stability of the simple metals with respect to free
atoms is caused by the lowering of the energy of the Bloch orbital with k = 0 in
the crystal compared to the ground valence orbital of the free atom. The effect
is illustrated in Fig. 19 for sodium and in Fig. 20 for a linear periodic potential
of attractive square wells. The ground orbital energy is much lower at the actual

spacing in the metal than for isolated atoms.

A decrease in ground orbital energy will increase the binding. The de-

crease in ground orbital energy is a consequence of the change in the boundary
condition on the wavefunction: The Schrodinger boundary condition for the
free atom is Y(r) — 0 as r — . In the crystal the k = 0 wavetunction u(r) has
the symmetry of the lattice and is symmetric about r = 0. To have this, the
normal derivative of ¢y must vanish across every plane midway between adja-

cent atoms.
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Figure 20 Ground orbital (k = 0) energy for an electron in a periodic square well potential of
depth |Uy| = 2A%*/ma®. The energy is lowered as the wells come closer together. Here a is held
constant and b is varied. Large b/a corresponds to separated atoms. (Courtesy of C. Y. Fong.)




In a spherical approximation to the shape of the smallest Wigner-Seitz cell

we use the Wigner-Seitz boundary condition

(dldr),, = 0, (20)

where ry is the radius of a sphere equal in volume to a primitive cell of the
lattice. In sodium, ro = 3.95 Bohr units, or 2.08 A; the half-distance to a near-
est neighbor is 1.86 A. The spherical approximation is not bad for fcc and bece
structures. The boundary condition allows the ground orbital wavefunction to
have much less curvature than the free atom boundary condition. Much less
curvature means much less kinetic energy.

In sodium the other filled orbitals in the conduction band can be repre-
sented in a rough approximation by wavetunctions of the form (18), with

h2k>
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The Fermi energy is 3.1 eV, from Table 6.1. The average kinetic energy per
electron is 0.6 of the Fermi energy, or 1.9 eV. Because ¢, = —8.2 eV atk = 0,
the average electron energy is () = —8.2 + 1.9 = —6.3 eV, compared with
—5.15 eV for the valence electron of the free atom, Fig. 21.

We therefore estimate that sodium metal is stable by about 1.1 eV with
respect to the free atom. This result agrees well with the experimental value

1.13 eV. We have neglected several corrections whose overall effect in sodium
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Figure 21 Cohesive energy of sodium metal is the
difference between the average energy of an elec-
tron in the metal (—6.3 eV) and the ground state
energy (—5.15 eV) of the valence 3s electron in the
free atom, referred to an Na™ ion plus free electron :
at infinite separation. -8.2 eV

k = 0 state



Pseudopotential Methods

Conduction electron wavefunctions are usually smoothly varying in the
region between the ion cores, but have a complicated nodal structure in the
region of the cores. This behavior is illustrated by the ground orbital of sodium,
Fig. 19. It is helpful to view the nodes in the conduction electron wavefunction
in the core region as created by the requirement that the function be orthogo-
nal to the wavefunctions of the core electrons. This all comes out of the Schré-
dinger equation, but we can see that we need the flexibility of two nodes in the
3s conduction orbital of Na in order to be orthogonal both to the 1s core orbital
with no nodes and the 2s core orbital with one node.

Outside the core the potential energy that acts on the conduction electron
is relatively weak: the potential energy is only the coulomb potential of the
singly-charged positive ion cores and is reduced markedly by the electrostatic
screening of the other conduction electrons, Chapter 10. In this outer region
the conduction electron wavefunctions are as smoothly varying as plane waves.




It the conduction orbitals in this outer region are approximately plane
waves, the energy must depend on the wavevector approximately as ¢ =
#°k*/2m as for free electrons. But how do we treat the conduction orbitals in the
core region where the orbitals are not at all like plane waves?

What goes on in the core is largely irrelevant to the dependence of € on k.
Recall that we can calculate the energy by applying the hamiltonian operator to
an orbital at any point in space. Applied in the outer region, this operation will
give an energy nearly equal to the free electron energy.

This argument leads naturally to the idea that we might replace the actual
potential energy (and filled shells) in the core region by an effective potential

energy’ that gives the same wavefunctions outside the core as are given by the

actual ion cores. It is startling to find that the effective potential or pseudopo-

tential that satisfies this requirement is nearly zero. This conclusion about

pseudopotentials is supported by a large amount of empirical experience as well
as by theoretical arguments. The result is referred to as the cancellation theo-
rem.




Empty Core Model

The pseudopotential for a problem is not unique nor exact, but it may be
very good. On the Empty Core Model (ECM) we can even take the unscreened
pseudopotential to be zero inside some radius R,:

0 , for r <R, :
—eIr for r >R, .

(21)

This potential should now be screened as described in Chapter 10. Each com-

ponent_U(K) of U(r) is to be divided by the dielectric constant €(K) of the

electron gas. If, just as an example, we use the Thomas-Fermi dielectric func-

tion (10.33), we obtain the screened pseudopotential plotted in Fig. 22a.

The pseudopotential as drawn is much weaker than the true potential, but
the pseudopotential was adjusted so that the wavefunction in the outer region is
nearly identical to that for the true potential. In the language of scattering
theory, we adjust the phase shifts of the pseudopotential to match those of the
true potential.



Calculation of the band structure depends only on the Fourier components

of the pseudopotential at the reciprocal lattice vectors. Usually only a few val-
ues of the coefficients U(G) are needed to get a good band structure: see the
U(G) in Fig. 22b. These coeflicients are sometimes calculated from model po-
tentials, and sometimes they are obtained from fits of tentative band structures
to the results of optical measurements. Good values of U(0) can be estimated
from first principles; it is shown in (10.43) that for a screened Coulomb poten-
tial U(0) = —3ep.

In the remarkably successful Empirical Pseudopotential Method (EPM)
the band structure is calculated using a few coefficients U(G) deduced from
theoretical fits to measurements of the optical reflectance and absorption of

crystals, as discussed in Chapter 11. Tables of values of U(G) are given in the
review by M. L. Cohen and V. Heine.

Charge density maps can be plotted from the wavefunctions generated by
the EPM—see Fig. 3.11. The results are in excellent agreement with x-ray
diffraction determinations; such maps give an understanding of the bonding
and have great predictive value for proposed new structures and compounds.



The EPM values of the coefficients U(G) often are additive in the contribu-
tions of the several types of ions that are present. Thus it may be possible to
construct the U(G) for entirely new structures, starting from results on known
structures. Further, the pressure dependence of a band structure may be de-
termined when it is possible to estimate from the form of the U(r) curve the
dependence of U(G) on small variations of G.

It is often possible to calculate band structures, cohesive energy, lattice
constants, and bulk moduli from first principles. In such ab initio pseudopoten-
tial calculations the basic inputs are the crystal structure type and the atomic
number, along with well-tested theoretical approximations to exchange energy

terms. This is not the same as calculating from atomic number alone, but it is
the most reasonable basis for a first-principles calculation. The results of M. T.
Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982), are compared with experi-
ment in the table that follows.



Silicon
Calculated
Experimental

Germanium
Calculated
Experimental

Diamond
Calculated
Experimental

Lattice

Cohesive

Bulk

constant energy modulus
(A) | (eV) (Mbar)
5.45 4.84 0.98
5.43 4.63 0.99
5.66 4.26 0.73
5.65 3.85 0.77
3.60 8.10 4.33
3.57 7.35 4.43
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Figure 22a Pseudopotential for metallic sodium, based on the empty core model and screened by
the Thomas-Fermi dielectric Tunction. The calculations were made for an empty core radius R, =
1.66a,, where a, is the Bohr radius, and for a screening parameter k,a, = 0.79. The dashed curve
shows the assumed unscreened potential, as from (21). The dotted curve is the actual potential of
the ion core; other values of U(r) are —50.4, —11.6, and —4.6, for r = 0.15, 0.4, and 0.7, respec-
tively. Thus the actual potential of the ion (chosen to fit the energy levels of the free atom) is very

much larger than the pseudopotential, over 200 times larger at r = 0.15.



Potential U(k)
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Figure 22b A typical reciprocal space
pseudopotential. Values of U(k) for
wavevectors equal to the reciprocal
lattice vectors, G, are indicated by the
dots. For very small k the potential
approaches (—2/3) times the Fermi
energy, which is the screened-ion limit
for metals. This limit is derived in
Chapter 10. (After M. L. Cohen.)



